© Elsevier Scientific Publishing Company, Amsterdam - Printed in The Netherlands

BBA 76431

CONTROL OF SODIUM, POTASSIUM AND WATER CONTENT AND UTILIZATION OF OXYGEN IN RAT LIVER SLICES, STUDIED BY AFFECTING CELL MEMBRANE PERMEABILITY WITH CALCIUM AND ACTIVE TRANSPORT WITH OUABAIN

C. W. MCLAUGHLIN

Department of Physiology, University of Otago Medical School, Dunedin (New Zealand) (Received May 7th, 1973)

SUMMARY

Slicing and incubating rat liver caused a rapid Ca^{2+} -independent exchange of K^+ for Na^+ , followed by a Ca^{2+} -dependent recovery. Freshly cut slices washed for 10 min in a Ca^{2+} medium containing equal concentrations of Na^+ and K^+ showed little replacement of K^+ by Na^+ during subsequent incubation in a normal medium. Changes in medium Ca^{2+} caused immediate changes in slice Na^+ and K^+ , before any substantial change in slice Ca^{2+} and without altering gradients responsible for passive transfers of Na^+ and K^+ . Ca^{2+} did not influence an ouabain-sensitive Na^+ pump. It also appeared unlikely that Ca^{2+} was required for an ouabain-insensitive Na^+ pump or for maintenance of intracellular structures concerned with K^+ sorption, even if these mechanisms existed in the slices. Instead Ca^{2+} seemed to maintain the cell membrane relatively impermeable to Na^+ and K^+ . An ouabain-sensitive Na^+ pump not normally dependent on oxygen supply to the cells appeared to alter its activity according to the work required of it. Control of slice water content could not be attributed to the activity of this pump.

INTRODUCTION

Although Ca²⁺ has been shown to alter the ability of incubated rat liver slices to maintain a low Na⁺ content and high K⁺ content¹ there is doubt about the mechanisms involved. It is generally assumed that Ca²⁺ maintains a relatively low cell membrane permeability to Na⁺ and K⁺ although the evidence quoted for this is usually derived from other tissue preparations². Loewenstein³, studying the high permeability of cell–cell junctions in a number of tissues including liver, found this depended on low Ca²⁺ in the (intracellular) region of the junctional membrane. Judah and Ahmed⁴ investigated an apparent metabolic effect of Ca²⁺, and suggested that Ca²⁺ taken up by slices occupied and paralysed the active sites of the Na⁺ transporting system. This effect was also studied by Van Rossum² who included some information of slice Ca²⁺ contents. Others⁵ have postulated that the Na⁺/K⁺ ratio of normal tissue is maintained by mechanisms other than the "pump and leak" or mem-

brane theory. This work presents further details of the behaviour of liver incubated with and without Ca²⁺, using a novel incubation medium. Slice Ca²⁺ concentrations were measured concurrently with Na⁺ and K⁺ concentrations and water contents, at all stages of incubation. Oxygen consumption was also measured in an attempt to follow metabolic integrity during incubation. The results indicated that calcium affected cell membrane permeability, and it was then possible to make a preliminary interpretation of oxygen utilization and control of water content in the slices.

METHODS

Expression of results

Water contents of slices are dimensionless numbers, being the ratio of the mass of water and the mass of solid material in the slice. Electrolyte concentrations are expressed as amounts of electrolyte in the water (mmole·kg⁻¹) contained in the slices. This is not intended to imply that all electrolyte was in solution, or that all slice water was solvent. Where appropriate, electrolyte contents (mmole·kg⁻¹ of dry wt) are also given.

Graphs show mean \pm standard deviation of groups of relevant observations. Comparisons of samples for probability of equal means have been made using Student's t test.

Media

The media were developed from the synthetic interstitial fluid of Bretag⁶. Ca^{2+} was omitted from all the media except where specifically required, when it was added separately. Compositions were: Incubation medium (mM): Na⁺, 145.0; K⁺, 3.5; Mg²⁺, 0.68; Cl⁻, 115.6; HCO₃⁻, 21.6; H₂PO₄⁻, 1.7; SO₄²⁻, 0.68; gluconate, 9.6; glucose, 5.55; sucrose, 7.6. pH 7.4 with CO_2 -O₂ (5:95, v/v) in the gas phase, temperature 37 °C. Na⁺ = K⁺ medium (mM): Na⁺, 75; K⁺, 75; Cl⁻, 117.1; otherwise identical to incubation medium. Ca²⁺ (M CaCl₂) or EDTA was added to these media as required.

Animals

Respiration studies were performed on slices from male rats of a closed colony albino strain from the Otago Medical School Animal Department. These rats were also used for the analyses of slice composition shown in Fig. 4. All other results were obtained with male black and white hooded rats of an inbred strain from the Otago Medical School Animal Department.

Procedure

Rats were anaesthetised with diethyl ether and bled from the carotid artery. The liver was removed and slices cut on a mechanical chopping device⁷ (Mickle Laboratory Engineering Co.), then transferred to the desired medium without prior leaching at low temperature, or equilibration. This procedure could be accomplished in 4 min and enabled the initial behaviour of incubated rat liver slices to be followed. Slices were incubated in open beakers in controlled-temperature water-baths, stirred by the bubbling gas phase.

Analytical methods

Slices required for analysis were gently blotted and their water content determined by weighing after at least 2.5 h at 105 °C (ref. 8). The dried slices were extracted overnight with 2.7 ml of 0.1 M HNO₃ and the extracts analysed for Na⁺ and K⁺ by flame photometry and for Ca²⁺ by atomic absorption spectrophotometry.

For measurement of O_2 consumption with an oxygen electrode, slices were incubated in a 134-ml water-jacketed glass vessel with no gas phase. The rate of O_2 consumption by slices was constant over the range of O_2 concentrations 0.95-0.35 of saturation. The medium was recharged with CO_2 - O_2 (5:95, v/v) when the O_2 content fell to 0.4-0.5 of saturation. Rates of O_2 consumption are expressed in cm³·s⁻¹·(kg initial wet wt)⁻¹. The oxygen electrode provided greater accuracy and sensitivity to rapid changes in O_2 consumption than a manometric technique would have done, and also enabled a HCO_3 -buffered medium to be used for studies of both electrolytes and O_2 consumption. In these and other cases, sets of related observations together with their individual time coordinates were subjected to polynomial regression analysis to obtain rate equations. On graphs these took the form of two lines representing fitted dependent values \pm S.E. of fit.

RESULTS

Effect of Ca2+ on incubated liver slices

Freshly cut slices sustained a rapid loss of K⁺ and gain of Na⁺ when suspended in incubation medium both with and without Ca²⁺ (Fig. 1). These electrolyte changes,

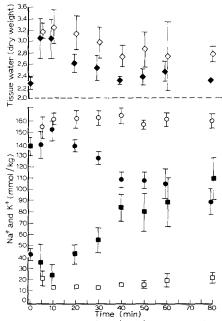


Fig. 1. Amounts of Na⁺, K⁺ and water in slices maintained in incubation medium and in incubation medium containing 1.5 mM Ca^{2+} . Each point represents mean \pm S.D. of 6-8 separate observations. Composition of unincubated liver plotted at 0 min. Incubation medium: \bigcirc , Na⁺; \square , K⁺; \diamondsuit , H₂O. Incubation medium + Ca²⁺: \blacksquare , Na⁺; \blacksquare , K⁺; \diamondsuit , H₂O.

which lasted for 10 min, were accompanied by considerable swelling of the slices, also shown in Fig. 1. The Ca^{2+} concentration of slices meanwhile increased rapidly from 1.45 to 6.49 mmole \cdot kg⁻¹ in the presence of Ca^{2+} . In the absence of medium Ca^{2+} there was a small drop in slice Ca^{2+} during the first 10 min.

The changes during the first 10 min of incubation were not subsequently maintained. In the absence of Ca^{2+} , Na^+ and K^+ concentrations remained at approximately the levels previously achieved. But in the presence of Ca^{2+} there was a steady recovery of slice K^+ (86.0 mmole \cdot kg $^{-1}$) and a parallel extrusion of Na^+ (62.2 mmole kg $^{-1}$) during 70 min of further incubation. Slice Ca^{2+} did not alter much in the presence of Ca^{2+} , but there was a steady decrease of 0.95 mmole \cdot kg $^{-1}$ over 80 min in the absence of medium Ca^{2+} . The water contents of slices decreased after the first 10 min of incubation, and in the presence of Ca^{2+} they returned to the level in fresh liver tissue. They remained significantly higher than this in the absence of Ca^{2+} , although some recovery was seen.

Preincubation of slices in $Na^+ = K^+$ medium in presence and absence of Ca^+

A method of incubation was sought that would provide a short wash, and protect slices from the drastic changes in composition that occurred during the first 10 min in incubation media. Washing in media in which the concentration of Na^+ and K^+ were respectively equal to those of K^+ and Na^+ in incubation media gave slices which contained little Na^+ and were rich in K^+ , but this composition was not maintained on subsequent incubation in incubation media.

Slices washed for 10 min in $Na^+ = K^+$ media with or without Ca^{2^+} , then transferred to incubation media and incubated for up to 6 h were more satisfactory (Fig. 2). Concentration of the medium by evaporation was not studied, but there was no obvious depletion of medium volume.

During the 10-min washing, Na⁺ concentration in these slices had increased either in the presence or absence of Ca^{2+} . The K⁺ concentration was reduced in the absence of Ca^{2+} , and had not altered significantly in the presence of Ca^{2+} , but since this medium would have increased extracellular K⁺, intracellular K⁺ was probably lower than that of cells *in vivo*. The water content was slightly elevated after 10 min washing.

On transfer of the washed slices to incubation media there was a rapid increase in Na $^+$ and decrease in K $^+$ concentrations in the absence of Ca $^{2+}$; these changes continuing for about 15 min, after which relatively stable levels were reached and maintained over 4 h. In the presence of Ca $^{2+}$, the initial increase in slice Na $^+$ and decrease in K $^+$ on transfer to incubation medium were smaller. On continuing incubation, these slices lost small amounts of Na $^+$ and gained a little K $^+$ over 6 h, finally showing a Na $^+$ concentration somewhat greater than fresh liver and a K $^+$ concentration almost indistinguishable from that of fresh liver tissue (P > 0.05).

In the absence of medium Ca^{2+} , slice Ca^{2+} declined throughout the 6 h of incubation, finally reaching almost zero values. In the presence of Ca^{2+} , slice Ca^{2+} increased by 2.35 mmole kg^{-1} during the incubation in $Na^{+} = K^{+}$ medium then remained at an approximately constant level for 6 h.

The water content, which increased slightly during washing in $Na^+ = K^+$ media, declined during a further 30 min of incubation to about the level in unsliced liver tissue. This value was then maintained either with or without Ca^{2+} for 4 h. But while

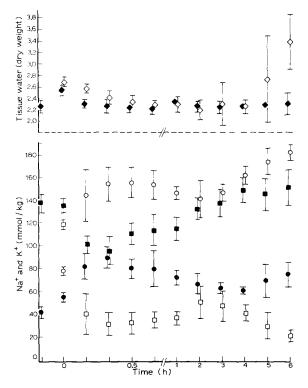


Fig. 2. Amounts of Na⁺, K⁺ and water in slices washed for 10 min in Na⁺=K⁺ medium and in Na⁺=K⁺ medium + 1.5 mM Ca²⁺ then incubated in incubation medium and in incubation medium + 1.5 mM Ca²⁺. Each point represents mean \pm S.D. of 6-8 separate observations. Slices transferred from Na⁺=K⁺ media to incubation media at 0 h. Composition of unincubated liver plotted at -10 min copied from previous experiment. Ca²⁺-free media: \bigcirc , Na⁺; \square , K⁺, \bigcirc , H₂O. Media + Ca²⁺: \blacksquare , Na⁺; \blacksquare , K⁺ \spadesuit , H₂O.

in the presence of Ca²⁺, a further 2 h of incubation revealed no change in water content, in the absence of Ca²⁺ a considerable swelling had occurred. This was associated with uptake of Na⁺ and loss of K⁺ from the tissue.

Effect of transferring slices from medium containing Ca2+ to Ca2+-free medium

An attempt was made to separate effects of lack of Ca^{2+} on incubated slices from changes caused by cutting and incubating slices. Slices were washed for 10 min in $Na^+ = K^+$ medium containing 1.5 mM Ca^{2+} , then maintained in incubation medium containing 1.5 mM Ca^{2+} for 60 min. The slices were then placed in incubation medium devoid of Ca^{2+} and analysed for their electrolyte and water contents during incubation over 60 min. The results are shown in Fig. 3.

Introduction of the slices into Ca^{2+} -free medium was followed immediately by a slowly declining increase in Na⁺ concentration and a corresponding immediate decrease in K⁺ concentration; Na⁺ after t min = $(79.2 + 3.00 \ t - 0.0312 \ t^2)$ mmole·kg⁻¹; K⁺ after t min = $(110.0 - 3.03 \ t + 0.0326 \ t^2)$ mmole·kg⁻¹.

Both these changes appeared to commence without any time lag. They con-

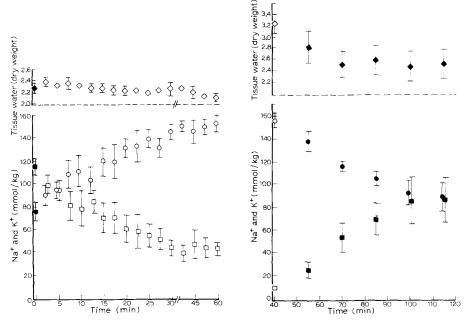


Fig. 3. Amounts of Na $^+$, K $^+$ and water in slices maintained in incubation medium after preliminary incubation for 1 h in medium+1.5 mM Ca $^{2+}$. Each point represents mean \pm S.D. of 6-10 separate observations. Composition of slices after incubation for 1 h in medium+Ca $^{2+}$ plotted at 0 min. Incubation medium: \bigcirc , Na; $^+$ \sqcup , K $^+$; \bigcirc , H₂O. Incubation medium+Ca $^{2+}$: \blacksquare , Na $^+$; \blacksquare , K $^+$; \diamondsuit , H₂O.

Fig. 4. Amounts of Na⁺, K⁺ and water in slices after addition of 1.5 mM Ca²⁺ to incubation medium after incubation for 40 min in medium devoid of Ca²⁺. Each point represents mean \pm S.D. of 8 separate observations. Composition of slices after 40 min in absence of Ca²⁺ plotted at 40 min. Incubation medium: \bigcirc , Na⁺; \bot , K⁺; \bigcirc , H₂O. Medium + Ca²⁺: \bigcirc , Na⁺; \blacksquare , K⁺; \spadesuit , H₂O.

tinued for about 30 min, after which approximately stable levels of both Na⁺ and K⁺ were maintained.

The Ca^{2+} concentration decreased from 4.25 to 3.05 mmole·kg⁻¹ (P<0.001) within 2.5 min of introduction to Ca^{2+} -free medium. This was followed by a slower steady decline for the remainder of the incubation. In contrast to the very large changes in ions, the water content remained quite constant (P>0.5) in the absence of Ca^{2+} .

To check that these changes were not merely due to the transfer process, slices were incubated under identical conditions to those described above but were transferred from incubation medium containing Ca²⁺ to identical fresh medium. In this case there was no noticeable alteration in any of the measured parameters.

Effects of adding Ca2+ to Ca2+-free medium during incubation of slices

Slices were washed for 10 min in incubation medium, then transferred to fresh medium and incubated a further 30 min, after which 1.5 mM Ca²⁺ was added and the incubation continued. Water content and electrolyte concentrations of slices were measured after addition of Ca²⁺ (Fig. 4).

Following addition of Ca²⁺, Na⁺ concentration decreased at a declining rate:

and K⁺ increased concurrently: Na⁺ after t min = $(234.0 - 2.26 \ t + 0.00870 \ t^2)$ mmole·kg⁻¹; K⁺ after t min = $(-80.5 + 2.53 \ t - 0.00909 \ t^2)$ mmole·kg⁻¹. Both these equations were calculated on the basis that Ca²⁺ was added at 40 min. Although slices were not analysed until 15 min after addition of Ca²⁺, it appeared by interpolation that the changes in Na⁺ and K⁺ commenced without any time lag.

As in previous cases the Ca^{2+} concentration increased rapidly on addition of Ca^{2+} to the medium, reaching 5.7 mmole kg^{-1} .

The water content, which was 3.24 before the addition of Ca²⁺, decreased after the addition by 0.72 within 30 min and then remained constant.

Effect of ouabain during incubation of slices in presence and absence of Ca2+

Ouabain was used to inhibit active ion transport in slices incubated in the presence and absence of Ca^{2+} . Slices were washed in $Na^+ = K^+$ media for 10 min, transferred to incubation medium, and maintained for 60 min. Ouabain at 3 mg·ml⁻¹ (4.12 mM) was then added and slices analysed during the subsequent 40 min (Fig. 5). Half of the slices so treated were incubated in 1.5 mM Ca^{2+} throughout. Fig. 6 shows the O_2 consumption of slices incubated in the presence of 4.12 mM ouabain added after 30 min of incubation. Preliminary experiments with lower concentrations of ouabain had demonstrated a less complete inhibition than that described here.

On addition of ouabain, slices incubated in the presence of Ca^{2+} gained Na^{+} at an initial rate of 1.97 mmole $kg^{-1} \cdot min^{-1}$ and lost K^{+} at a rate of 1.80

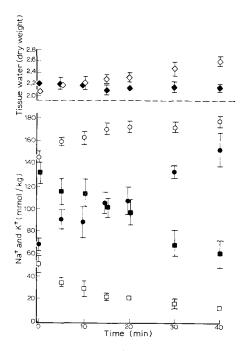
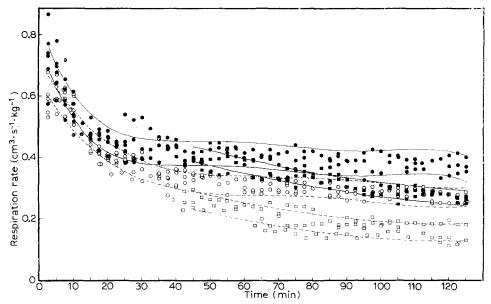



Fig. 5. Amounts of Na⁺, K⁺ and water in slices incubated in media containing 4.12 mM ouabain. Each point represents mean \pm S.D. of 6 separate observations. Composition of slices before addition of ouabain is plotted at 0 min. Incubation medium: \bigcirc , Na⁺; \square , K⁺; \diamondsuit , H₂O. Medium + Ca²⁺: \bullet , Na⁺; \square , K⁺; \diamondsuit , H₂O.

mmole \cdot kg⁻¹·min⁻¹. The accumulation of Na⁺ and loss of K⁺ continued throughout 40 min of incubation and the slice concentrations appeared to be approaching those of slices without Ca²⁺. In the absence of Ca²⁺, accumulation of Na⁺ and loss of K⁺ were also observed following addition of ouabain. These changes were faster initially than in the presence of Ca²⁺, although the gradients driving passive movements of Na⁺ and K⁺ were smaller.

There were no obvious changes in Ca^{2+} concentration after addition of ouabain. during incubation either in the presence or absence of Ca^{2+} . Slices incubated in the presence of Ca^{2+} showed no increase in water content 40 min after addition of ouabain but those incubated in the absence of Ca^{2+} had gained water (P < 0.001).

The addition of ouabain caused a marked and quite similar decline in respiratory rate, both in the presence and absence of Ca^{2+} , of the order of 0.004 cm³·s⁻¹·kg⁻¹·min⁻¹ during the first few minutes after the addition. While respiratory rates of slices not subjected to the influence of ouabain remained constant or declined only slightly, the decline continued during 80 min of incubation in the presence of ouabain but at a decreasing rate.

In the absence of Ca^{2+} , the addition of ouabain not only initiated a continuing decline in respiration rate but also resulted in an immediate fall which could not be detected in the presence of Ca^{2+} .

DISCUSSION

The concentration of Ca^{2+} inside the cells of liver and many other tissues is too small to be in equilibrium with external Ca^{2+} at measured membrane potentials, and

active outward transport must be assumed. However, the membrane potential of incubated rat liver slices has been reported as 0.028 V, inside negative, which is considerably lower than the value for intact liver, but even slices with this low potential, incubated in 1.5 mM Ca²⁺, should have an intracellular equilibrium concentration of Ca²⁺ of 12.2 mM. In these experiments, as in other work^{10–12}, incubation of slices or prolonged perfusion of liver resulted in accumulation of Ca²⁺. In the case of slices this was complete in 10 min and no more Ca²⁺ was accumulated on continuing incubation. Van Rossum¹² reported that Ca²⁺ accumulated at 1 °C was lost on increasing the temperature to 38 °C, but some of this Ca²⁺ may have been associated with water lost at about the same time¹³. At all events, the concentration of Ca²⁺ in normal incubated slices never approached the equilibrium concentration (12.2 mM) and since other work in this laboratory indicated that only 0.17 of the Ca²⁺ in incubated slices could be found in a supernatant devoid of mitochondria, the concentration of free Ca²⁺ in cytoplasmic solution was likely to be so low that active outward transport of Ca²⁺ would need to be postulated in slices.

Medium Ca^{2+} was not only required for incubated rat liver slices to maintain a normal steady state composition with low Na^+ and high K^+ (Fig. 2); there were also immediate changes in composition when Ca^{2+} alone was altered in the medium (Figs 3 and 4), without altering the gradients of Na^+ and K^+ . The addition of ouabain also caused changes in Na^+ and K^+ concentrations, and these were additional to the effects arising from absence of Ca^{2+} (Fig. 5).

 ${\rm Ca^{2}}^{+}$ might have acted by several possible mechanisms. It could have reduced leakage of Na⁺ and K⁺ in a pump-leak system. Alternatively it could have enhanced active ion transport by being necessary either for metabolism or for an ion pump, which would have to be other than the ouabain-inhibited Na⁺-K⁺ exchange pump, for which there is no evidence of ${\rm Ca^{2}}^{+}$ dependence¹⁴. It is also possible that ${\rm Ca^{2}}^{+}$ was required for accumulation of K⁺ by sorption on some cellular component. If the structure of such components was energy dependent, this could also be "active transport".

Because of the difficulties of making reliable determinations^{15,16} the extracellular space in the slices was not measured. The amount of extracellular Ca²⁺ was therefore not known, but this fraction could be expected to change more rapidly in response to alterations in the concentration of Ca²⁺ in the medium. Hence although no compartment could be considered Ca²⁺ free and unable to contribute an effect, the behaviour of slices transferred to Ca²⁺ free medium (Fig. 3) is evidence against an intracellular action, as, for example, on metabolism or on K⁺ sorption. The Ca²⁺ which was quickly lost on transfer to Ca²⁺-free medium was probably extracellular. If the maintenance of normal concentrations of Na⁺ and K⁺ had depended upon intracellular Ca²⁺, then the continuing Ca²⁺ loss should have been accompanied by increasing rates of Na⁺ and K⁺ flux, not decreasing rates as observed. Moreover if intracellular Ca²⁺ was required for metabolism^{17,18}, the slower depletion of this fraction, together with reserves of metabolites and energy-rich compounds¹⁹ should have introduced a time lag between changes in medium Ca²⁺ and changes in Na⁺ and K⁺, but this was not observed (Figs 3 and 4).

The possibility that Ca²⁺ enhanced active ion transport in any of the ways outlined above is not supported by the effects of ouabain on slices (Fig. 5). Table I shows some of the values from Fig. 5 converted to electrolyte contents of slices, *i.e.*

TABLE I EFFECT OF Ca^{2+} BEFORE AND AFTER OUABAIN TREATMENT

The Na⁺ and K⁺ concentrations shown at 0 and 40 min in Fig. 5 are expressed on a dry-weight basis.

	Na ⁺ content (mmole·kg ^{—1} dry wt)		K^+ content (mmole · kg $^{-1}$ dry wt)	
	Before ouabain	After ouabain	Before ouabain	After ouabain
Ca ²⁺ -free (a)	302.6	457.7	104.7	30.9
Ca ²⁺ present (b)	150.6	321.4	289.8	125.4
Effect of $Ca^{2+}(b-a)$	-152.0	-136.3	185.1	94.5

mmole kg^{-1} of dry wt. It is apparent from the first line of Table I that Ca^{2+} was not required for a ouabain-sensitive system that was able to maintain at least part of the normal slice composition. Slices with Ca²⁺ had less Na⁺ and more K⁺ than slices without (third line of Table I). If Ca²⁺ had been necessary for an active transport mechanism then as ouabain reduced the Ca2+-independent contribution (first line of Table I), the contributions due to Ca²⁺ should have increased, as the Ca²⁺-dependent system would then be working against smaller gradients. In fact, the third line of Table I shows that for both Na⁺ and K⁺, the contribution due to Ca²⁺ was reduced after treatment with ouabain, Fig. 5 indicating that the effect of Ca²⁺ would have become minimal if incubation had been continued longer. This could be expected if the hypothetical Ca²⁺-dependent active ion transport was ouabain-sensitive. However, if both Ca2+-dependent and Ca2+-independent transport were blocked simultaneously, and if membrane permeability was not affected by Ca²⁺, the proportion of K⁺ lost from any initial content in a given time should also be independent of Ca²⁺. In fact, in the first 5 min after addition of ouabain, 0.3 of the K⁺ in Ca²⁺-free slices had been lost compared with only 0.13 of the K⁺ in slices with Ca²⁺.

The results could be explained if Ca^{2+} reduced Na^+-K^+ leakage in a pumpleak system. The immediate onset of effects following changes in medium Ca^{2+} (Figs 3 and 4) favours an action of Ca^{2+} at the surface of the cells, probably to reduce membrane permeability. The fact that in slices inhibited with ouabain (Fig. 5), Na^+ and K^+ changed more slowly in presence of Ca^{2+} than in its absence, although they eventually approached the same values, suggests that Ca^{2+} reduced membrane permeability. Since almost the entire K^+ content of the slices seemed to be attributable to the combined effects of a ouabain-sensitive pump and a Ca^{2+} -sensitive leak, it is doubtful if any other mechanisms for accumulating K^+ were important, whether Ca^{2+} dependent or not.

Since the smaller O_2 consumption in absence of Ca^{2+} (Fig. 6) could not readily be attributed to a direct effect of Ca^{2+} on energy supplies or ion pumps, another interpretation would be that high Na^+ and low K^+ in the absence of Ca^{2+} were detrimental to the normal function of the cells, resulting in impaired respiration. A number of cell functions are dependent on or activated by K^+ or are inhibited by Na^+ (refs 20–24) and in addition the basis of the K^+ sorption theories is that intracellular structure is maintained by K^+ but not by Na^+ .

The initial rates of O_2 consumption of slices were similar to those for perfused liver^{25,26}, but with slices these rates were not maintained. The initial, Ca^{2+} -insensitive, decline in respiration rate in Fig. 6 might have been related to the rapid changes in composition of incubated fresh slices (Fig. 1) and both phenomena presumably reflected a deterioration of freshly-cut tissue. However, the two phenomena were probably not directly related, for the slices in Fig. 6 had been prewashed in $Na^+ = K^+$ medium, and in the presence of Ca^{2+} they did not experience large upsets in composition. After 30 min the slices incubated in Ca^{2+} medium had progressed substantially towards a normal $Na^+ - K^+$ ratio and their respiration rates remained relatively static. But slices incubated in the absence of Ca^{2+} did not recover a normal $Na^+ - K^+$ ratio and their respiration rate continued to decline, though more slowly than initially.

Ouabain has been found to decrease O_2 consumption concurrently with inhibition of ion transport in gall bladder²⁷, kidney^{28–30} and liver³¹ and an inhibitory effect on glycolysis in tumor cells and erythrocytes has been noted³². Since in the present experiments addition of ouabain had no immediate effect on the O_2 consumption of slices incubated in presence of Ca^{2+} (Fig. 6), but was followed by alterations in ion content with no lag phase, active ion transport did not appear to need a direct O_2 supply under these conditions³³. Other workers³¹ have recorded higher respiration rates and have also obtained evidence of ion transport coupled to O_2 consumption. Possibly the extent of such coupling may depend upon experimental conditions, and upon how these influence the load on the pumping system. The absence of Ca^{2+} leading to high Na^+ -low K^+ might have been such a factor, placing a greater load on the pumping system, so that the system would respond with increased activity, depending on coupled O_2 consumption to do so. The small immediate fall of 0.2 in respiration rate on addition of ouabain (Fig. 6, absence of Ca^{2+}) could be a measure of O_2 required for ion transport, which was not required when ouabain inhibited that transport.

Finally, the control of water content is of interest. Like ouabain in Ca^{2+} medium (Fig. 5), lack of Ca^{2+} resulted in a large deviation of Na^{+} and K^{+} from their "normal" values, but no prolonged change in water content was detected if slices were preincubated in $Na^{+} = K^{+}$ medium (Figs 2 and 3). This behaviour would not be predicted if volume were regulated by a potassium-dependent, ouabain-sensitive sodium pump, but is like behaviour observed in kidney slices^{34–36} and suggests that liver slices may also regulate their water content by an ouabain-insensitive (and Ca^{2+} -independent) mechanism³⁷.

Some swelling occurred in the absence of Ca^{2+} if slices were not preincubated in $Na^+ = K^+$ medium, (Figs 1 and 4) or if ouabain was added in the absence of Ca^{2+} (Fig. 5), but this was under conditions in which slice K^+ had reached very low levels and was presumably secondary to movements of ions. With similar low levels in rat kidney slices there is some swelling³⁵.

It is concluded that cells in liver slices maintain their composition by an ouabain-sensitive system which pumps out Na $^+$ in exchange for K $^+$. This active system works against the continual loss of K $^+$ and gain of Na $^+$ through the cell membrane. The permeability of the membrane to Na $^+$ and K $^+$ is dependent on the presence of extracellular Ca $^{2+}$. In absence of Ca $^{2+}$ permeability is increased so that K $^+$ leaks out and Na $^+$ leaks in at such rates that the active pumping system cannot maintain normal intracellular composition, even though pumping activity may be increased under such conditions. Thus in the presence of Ca $^{2+}$ an active ion pumping system with a rela-

tively ion-impermeable membrane leads to a steady-state intracellular composition of high K^+ and low Na^+ while in the absence of Ca^{2+} the more permeable membrane allows loss of K^+ and gain of Na^+ leading to a steady state intracellular composition of low K^+ and high Na^+ .

ACKNOWLEDGEMENTS

This work was supported by the New Zealand Medical Research Council which provided salary and working expenses through Prof. J. R. Robinson's Body Fluids and Renal Physiology Project Grant. The author wishes to thank Prof. J. R. Robinson for discussions and helpful advice.

REFERENCES

- 1 Geyer, R. P., Sholtz, K. J. and Bowie, E. J. (1955) Am. J. Physiol. 182, 487-492
- 2 Van Rossum, G. D. V. (1970) Nature 225, 638-639
- 3 Loewenstein, W. R. (1973) Fed. Proc. 32, 60-64
- 4 Judah, J. D. and Ahmed, K. (1963) Biochim. Biophys. Acta 71, 34-44
- 5 Wiggins, P. M. (1971) J. Theor. Biol. 32, 131-146
- 6 Bretag, A. H. (1969) Life Sci. Part 18, 319-329
- 7 McIlwain, H. and Buddle, H. L. (1953) Biochem. J. 53, 412-420
- 8 Little J. R. (1964) Anal. Biochem. 7, 87-95
- 9 Claret, M. and Coraboeuf, E. (1970) J. Physiol. 210, 137P-138P
- 10 Dawkins, M. J. R., Judah, J. D. and Rees, K. R. (1959) J. Pathol. Bacteriol. 77, 257-275
- 11 Wallach, S., Reizenstein, D. L. and Bellavia, J. V. (1966) J. Gen. Physiol. 49, 743-762
- 12 Van Rossum, G. D. V. (1970) J. Gen. Physiol. 55, 18-32
- 13 Elsehove, A. and Van Rossum, G. D. V. (1963) J. Physiol. 168, 531-553
- 14 Skou, J. C. (1965) Physiol. Rev. 45, 596-617
- 15 Parsons, D. S. and Van Rossum, G. D. V. (1962) J. Physiol. 164, 116-126
- 16 Williams, J. A. and Woodbury, D. M. (1971) J. Physiol. 212, 85-99
- 17 Drummond, G. I. and Duncan, L. (1968) J. Biol. Chem. 243, 5532-5538
- 18 Rasmussen, H. (1970) Science 170, 404-412
- 19 Cascarano, J. and Seidman, I. (1970) Proc. Soc. Exp. Biol. Med. 133, 1097-1101
- 20 Buchanan, J. M., Hastings, A. B. and Nesbett, F. B. (1949) J. Biol. Chem. 180, 435-445
- 21 Gomez-Puyou, A., Sandoval, F., Pena, A., Chavez, E. and Tuena, M. (1969) J. Biol. Chem. 244, 5339-5345
- 22 Judah, J. D. and Nicholis, M. R. (1970) Biochem. J. 116, 663-669
- 23 Mitchell, P. (1967) in *Comprehensive Biochemistry* (Florkin, M. and Stotz, E. H., eds), Vol. 22, pp. 167–197, Elsevier, Amsterdam
- 24 Tews, J. K. and Harper, A. E. (1969) Biochim. Biophys. Acta 183, 601-610
- 25 Hems, R., Ross, B. D., Berry, M. N. and Krebs, H. A. (1966) Biochem. J. 101, 284-292
- 26 Exton, J. H. and Park, C. R. (1967) J. Biol. Chem. 242, 2622-2636
- 27 Martin, D. W. and Diamond, J. M. (1966) J. Gen. Physiol. 50, 295-315
- 28 Macknight, A. D. C. (1968) Biochim. Biophys. Acta 163, 500-505
- 29 Willis, J. S. (1968) Biochim. Biophys. Acta 163, 506-515
- 30 De Jairala, S. W., Goldman, L., Vieyra, A., Garcia, A. P. and Rasia, M. L. (1969) Biochim. Biophys. Acta 183, 137-143
- 31 Van Rossum, G. D. V. (1970) Biochim. Biophys. Acta 205, 7-17
- 32 Gordon, E. E. and De Hartog, M. (1969) J. Gen. Physiol. 54, 650-663
- 33 Frimmer, M. and Kreh, W. (1971) Naunyn-Schmiedebergs Arch. Pharmakol. Exp. Pathol. 268, 119-121
- 34 Kleinzeller, A. and Knotkova, A. (1964) J. Physiol. 175, 172-192
- 35 Macknight, A. D. C. (1968) Biochim. Biophys. Acta 150, 263-270
- 36 Whittembury, G. (1968) J. Gen. Physiol. 51, 303s-314s
- 37 Pilgrim, J. P., Robinson, B. A. and Macknight, A. D. C. (1973) *Proc. Univ. Otago Med. Sch.* 51, 15-17